Mark schemes

1
 B
 \square

[1]
2 A
3 B
4 B
5 B
$6 \quad \mathrm{~A}$

7 (a) (i) force acts towards left or in opposite direction to field lines \checkmark because ion (or electron) has negative charge
(\therefore experiences force in opposite direction to field) \checkmark
Mark sequentially.
Essential to refer to negative charge (or force on + charge is to right) for $2^{\text {nd }}$ mark.
(ii) (use of $W=F$ s gives) force $F=\frac{4.0 \times 10^{-16}}{63 \times 10^{-3}} \checkmark$

$$
=6.3(5) \times 10^{-15}(\mathrm{~N}) \checkmark
$$

If mass of ion m is used correctly using algebra with $F=$ ma, allow both marks (since m will cancel). If numerical value for m is used, $\max 1$.
(iii) electric field strength $E\left(=\frac{F}{Q}\right)=\frac{6.35 \times 10^{-15}}{3 \times 1.6 \times 10^{-19}}=1.3(2) \checkmark 10^{4}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \checkmark$

$$
\begin{aligned}
& {\left[\text { or } \quad \Delta V\left(=\frac{\Delta W}{Q}\right)=\frac{4.0 \times 10^{-16}}{3 \times 1.60 \times 10^{-19}} \quad(833 \mathrm{~V})\right.} \\
& \left.E\left(=\frac{\Delta V}{d}\right)=\frac{833}{63 \times 10^{-3}}=1.3(2) \vee 10^{4}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \checkmark\right]
\end{aligned}
$$

Allow ECF from wrong F value in (ii).
(b) (i) (vertically) downwards on diagram \checkmark reference to Fleming's LH rule or equivalent statement \checkmark

Mark sequentially.
$1^{\text {st }}$ point: allow "into the page".
(ii) number of free electrons in wire $=A \times I \times$ number density

$$
=5.1 \times 10^{-6} \times 95 \times 10^{-3} \times 8.4 \times 10^{28}=4.1(4.07) \times 10^{22} \checkmark
$$

Provided it is shown correctly to at least 2SF, final answer alone is sufficient for the mark. (Otherwise working is mandatory).
(iii) $B\left(=\frac{F}{Q v}\right)=\frac{1.4 \times 10^{-25}}{1.60 \times 10^{-19} \times 5.5 \times 10^{-6}} \checkmark=0.16(0.159)(\mathrm{T}) \checkmark$

$$
\left[\operatorname{or} B\left(=\frac{F}{I l}\right)=\frac{1.4 \times 10^{-25} \times 4.07 \times 10^{22}}{0.38 \times 95 \times 10^{-3}} \checkmark=0.16(0.158)(\mathrm{T}) \checkmark\right]
$$

In $2^{\text {nd }}$ method allow ECF from wrong number value in (ii).
(ii) force F is perpendicular to both B and I [or equivalent correct explanation using Fleming LHR] (1)
magnitude of F changes as size of current changes (1)
force acts in opposite direction when current reverses [or ac gives alternating force] (1)
continual reversal of ac means process is repeated (1)
(b) appreciation that maximum force corresponds to peak current (1)
peak current $=2.4 \times \sqrt{2}=3.39(\mathrm{~A})(1)$
$F_{\max }\left(=B I_{\mathrm{pk}} L\right)=0.22 \times 3.39 \times 55 \times 10^{-3}(1)\left(=4.10 \times 10^{-2} \mathrm{~N}\right)$
(c) wavelength (λ) of waves $=\left(=\frac{c}{f}\right)=\frac{64}{80}=0.80(\mathrm{~m})(1)$
length of wire is $\lambda / 2$ causing fundamental vibration (1)
[or λ of waves required for fundamental $(=2 \times 0.40)=0.80 \mathrm{~m}(1)$
natural frequency of wire $\left.\left(=\frac{c}{\lambda}\right)=\frac{64}{0.80}=80(\mathrm{~Hz})(1)\right]$
wire resonates (at frequency of ac supply) [or a statement that fundamental frequency (or a natural frequency) of the wire is the same as applied
frequency] (1)
(ii) angle required is 150°
which is $5 \pi / 6$ [or 2.6(2)] (radians)
Correct answer in radians scores both marks.
(b) (i) (magnitude of the induced) emf

Accept "induced voltage" or "rate of change of flux linkage", but not "voltage" alone.
(ii) frequency $\left(=\frac{1}{T}\right)=\frac{1}{40 \times 10^{-3}} \checkmark(=25 \mathrm{~Hz})$
no of revolutions per minute $=25 \times 60=1500$
1500 scores both marks.
Award 1 mark for $40 \mathrm{~s} \rightarrow 1.5 \mathrm{rev}^{\mathrm{min}}{ }^{-1}$.
(iii) maximum flux linkage $(=B A N)=0.55$ (Wb turns)
angular speed $\omega\left(=\frac{2 \pi}{T}\right)=\frac{2 \pi}{40 \times 10^{-3}} \quad \checkmark \quad\left(=157 \mathrm{rad} \mathrm{s}^{-1}\right)$
peak emf $(=B A N \omega)=0.55 \times 157=86(.4)(\mathrm{V}) \checkmark$
[or, less accurately, use of gradient method
$\left\{\right.$ e.g $\left.\quad \varepsilon\left(=\frac{\Delta(N \Phi)}{\Delta t}\right)=\frac{0.5-(-0.5)}{(16-4) \times 10^{-3}}=\frac{1.0}{12 \times 10^{-3}}\right\}=83(\pm 10)$
(V)
(max 2 for (iii) for values between 63 and 72 V or 94 and 103V)]
(c) sinusoidal shape of constant period 40 ms

Mark sequentially.
Graph must cover at least 80 ms .
correct phase (i.e. starts as a minus sin curve)
For $2^{\text {nd }}$ mark, accept + sin curve.
Perfect sin curves are not expected.
(d) $B A N=0.55 \therefore$ flux density $B=\frac{0.55}{4.0 \times 10^{-3} \times 550}$
$=0.25(0)(\mathrm{T}) \checkmark$
OR by use of ε from (b)(iii) and from
(b)(ii) substituted in $\varepsilon=B A N(2 \pi f)$.

12 B [1]

13 A

